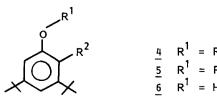
CCPPER CATALYSED O-PHENYLATION OF PHENOLS AND ENOLS BY PENTAVALENT ORGANOBISMUTH COMPOUNDS

Derek H.R. Barton, Jean-Pierre Finet, Jamal Khamsi and Clotilde Pichon

Institut de Chimie des Substances Naturelles, C.N.R.S. 91190 Gif-sur-Yvette, France

 $\frac{Abstract}{D} = The \underline{O}-phenylation of phenols under neutral conditions by Bi^V reagents is strongly catalysed by copper salts and by copper powder, even at room temperature. Enolic systems are also subject to copper powder catalysis and give exclusively <u>O</u>-phenylation.$

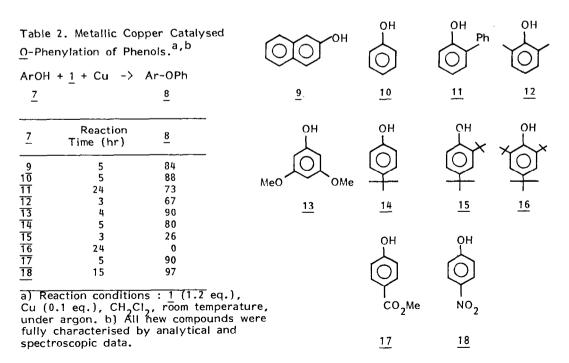

Regioselective phenylation of many phenols and enols by various pentavalent organobismuth reagents can be obtained by proper choice of the bismuth reagent and the reaction conditions.^{1,2} Thus, <u>O</u>- or <u>C</u>-phenylation can be selectively performed. The reactivity of triphenylbismuth diacylates with phenols and enols was not extensively studied.¹ However in the course of mechanistic studies on the David and Thieffry glycol <u>O</u>-arylation,^{3,4} we examined the reactivity of triphenylbismuth diacetate <u>1</u> with various substrates,⁵ among them phenols and enolic compounds.

Reaction of <u>1</u> with phenols in methylene dichloride under reflux yielded the <u>O</u>-phenyl derivatives, whereas reaction of <u>2</u> in the presence of a base led to <u>C</u>-phenylated derivatives.¹ Following the discovery of a strong copper salt catalysis in the David and Thieffry⁴ glycol <u>O</u>-phenylation reaction and a lesser catalysis in the <u>O</u>-phenylation of alcohols,⁶ we studied the effect of cupric diacetate on the phenylation of phenols. Addition of copper diacetate Cu(OAc)₂ in catalytic amount (0.1 equiv.) improved the reaction rate in such a way that the reaction could be run at room temperature (Table 1). An optimum yield was obtained after 1 hr, instead of 23 hours under reflux without catalyst.

$$Ph_3Bi(OAc)_2$$
 $Ph_3Bi(OCOCF_3)_2$ $Ph_4BiOCOCF_3$

2

1


3

Entry	Reaction Time (hr)	Catalyst (eq.)	BTMG ^b (eq.)	<u>'4</u>	<u>5</u> 86	<u>6</u> 0
1	23 ^c	-	0	14		
2	24 ^C	-	1.2	60	trace	20
3	1	Cu(OAc) ₂ , (0.1)	0	15	77	0
4	24	Cu(OAc), (0.1)	0	13	80	0
5	24	Cu(OAc), (0.1)	1.2	34	53	6
6	4	Cu, (0.1)	0	0	90	0

Table 1. Phenylation of Phenol 4 with Triphenylbismuth Diacetate^a

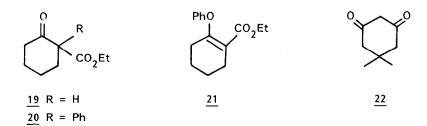
a) All reactions performed with 1 (1.2 eq.) in CH_Cl, under argon at room temperature unless specified otherwise. b) $BTMC^2 = N-t-butyl-N', N', N'', N''-tetramethylguanidine. c) Reaction performed under reflux.$

In the reaction under basic conditions, the original regioselectivity was reversed to give (Entry 5) mostly the <u>O</u>-phenyl ether, although in moderate yield (53%). A further modification of the reaction system made possible a high yielding reaction under mild conditions : addition of metallic copper powder (0.1 equiv.) to a mixture of <u>1</u> and <u>4</u> at room temperature in CH_2Cl_2 with stirring yielded <u>5</u> in 90% after 1 hr. The reaction was then performed on a series of phenols (Table 2). Only 2,4-di-t-butylphenol gave a poor yield and 2,4,6-tri-t-butylphenol did not react. The purity of the copper powder was not critical. 98.5% Pure copper had the same effect as Aldrich Gold Label 99.995% copper.

The effect of copper salts appeared also in the previously described <u>O</u>-phenylation of phenols¹ with tetraphenylbismuth trifluoroacetate <u>3</u>. Reaction of <u>3</u> with phenols <u>4</u> and <u>9</u> in benzene at room temperature gave after 24 hours poor to moderate yields of the corresponding <u>O</u>-phenyl ethers. However, addition of 0.1 equiv. of $Cu(OAc)_2$ gave a high yield (Table 3).

henol	Cu(OAc) ₂ (eq.)	Unreacted phenol (१)	Phenyl ether (%)	
<u>4</u>	0	60	27	
<u>4</u>	0.1	-	85	
<u>9</u>	0	36	50	
<u>9</u>	0.1	12	80	

Table 3. Copper Salt Catalysis of the Reaction of Phenol O-Phenylation with $\underline{3}^a$


a) All reactions performed with $\underline{3}$ (1.2 eq.) in benzene at room temperature for 24 hrs, under argon.

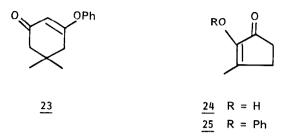

Entry	Substrate	Method ^a	Reaction Time (hr)	Catalyst (eq.)	S.M. (%)	<u>0</u> -phenyl ether (१)
1	19	A	20	_	19, (56)	21, (27)
2	<u>19</u>	А	40	Cu(OAc) ₂ , (().1) <u>19</u> , (55)	21, (40)
3	22	B	24	Cu, (0.1)	22, (22)	23, (45)
4	22	С	24	Cu, (0.1)	_	23, (88)
5	24	D	4	Cu, (0.1)	-	<u>25</u> , (70)
6	24	В	4	Cu, (0.1)	-	25, (96)

Table 4. Copper Catalysis of the Phenylation Reaction of Enols.

a) A: $\underline{3}$ (1.2 equiv.), C_6H_6 , 50°C; B: $\underline{2}$ (1 equiv.), CH_2CI_2 , room temperature;

C: $\underline{2}$ (2 equiv.), CH_2CI_2 , room temperature; D: $\underline{1}$ (1 equiv.), CH_2CI_2 , room temperature.

Enolic systems show a similar arylation behaviour to phenols.² Cupric acetate did not have a major catalytic effect on the <u>O</u>-phenylation of <u>19</u> (Table 4, entries 1 and 2). However, no <u>C</u>-phenyl derivative <u>20</u> was observed. Dimedone <u>22</u> was also converted to its <u>O</u>-phenyl derivative <u>23</u> in the presence of copper powder (Table 4, entries 3 and 4) which was markedly faster than the uncatalysed reaction.² The diosphenol <u>24</u> reacted very smoothly with the diacetate <u>1</u> or the reagent <u>2</u>, again with distinct catalysis, to furnish the O-phenyl derivative <u>25</u>.

The oxidation of thiols to disulphides by triphenylbismuth carbonate gives high yields.⁷ A similar oxidation is effected by the diacetate $\underline{2}$ and the reaction is not changed by the addition of copper powder.

The scope and mechanism of this catalysis by metallic copper in the <u>O</u>-arylation reactions of Bi^V compounds is currently under study and will be reported in full in due course.

REFERENCES

- D.H.R. Barton, N.Y. Bhatnagar, J.-C. Blazejewski, B. Charpiot, J.-P. Finet, D.J. Lester, W.B. Motherwell, M.T.B. Papoula, and S.P. Stanforth, <u>J. Chem.</u> Soc., Perkin Trans. 1, 2657 (1985).
- D.H.R. Barton, J.-C. Blazejewski, B. Charpiot, J.P. Finet, W.B. Motherwell, M.T.B. Papoula, and S.P. Stanforth, <u>J. Chem. Soc., Perkin Trans. 1</u>, 2667 (1985).
- S. David and A. Thieffry, <u>Tetrahedron Lett.</u>, <u>22</u>, 2885, 5063 (1981); <u>J. Org.</u> Chem., 48, 441 (1983).
- D.H.R. Barton, J.-P. Finet, and C. Pichon, <u>J. Chem. Soc., Chem. Commun.</u>, 65 (1986).
- D.H.R. Barton, J.-P. Finet, and C. Pichon, in preparation; C. Pichon, Thèse de Doctorat d'Etat, University of Orsay, 1985.
- V.A. Dodonov, A.V. Gushchin, and T.G. Brilkina, <u>Zh. Obshch. Khim.</u>, <u>54</u>, 2157 (1984); Chem. Abs., 102, 45543v (1985).
- D.H.R. Barton, J.P. Kitchin, D.J. Lester, W.B. Motherwell, and M.T. B. Papoula, Tetrahedron, 37, Suppl.1, 73 (1981).

(Received in France 2 June 1986)